

International Scientific Organization http://iscientific.org/ Chemistry International www.bosaljournals.com/chemint/



# Study of the vibronic coupling in the ground state of Methylthio radical

# R. Drissi El Bouzaidi<sup>1,2,\*</sup> and A. El Gridani<sup>1</sup>

<sup>1</sup>Laboratoire de chimie physique, Faculté des Sciences, B.P. 8106, Université Ibn Zohr, 80000, Agadir, Maroc. <sup>2</sup>Centre Régional des Métiers de L'Education et de Formation (CRMEF), Souss Massa Daraa, Inezgane, Maroc. \*Corresponding author's E. mail: drissi.rachid1@hotmail.fr

# ARTICLE INFO

## Article type: Research article Article history: Received July 2015 Accepted September 2015 April 2016 Issue Keywords: Vibronic coupling Emission spectrum Ground state Methylthio radical Crude adiabatic

# ABSTRACT

Using a methodology based on the crude adiabatic approximation, we study the complete linear and quadratic vibronic coupling in the ground state of *SCH*<sup>3</sup> radical. In order to build the representation of the hamiltonian, we evaluated 30 integrals intervening in the formulation of the vibronic coupling. Diagonalization of this representation gives the vibronic levels. For the lowest vibronic states, the implied modes are  $Q_1$  (symmetric *C-S* stretching) and  $Q_4$  (*CH*<sup>3</sup> rocking). Energy gaps  $A_1$ - $A_2$  and  $A_2$ - $\varepsilon$  resulting from the splitting due to the Jahn-Teller coupling *E*  $\otimes e = A_1 + A_2 + \varepsilon$  are evaluated to 250 and 169 cm<sup>-1</sup>, respectively. Essential coupling parameters are surrounded to simplify the study of highly vibronic states.

## © 2016 International Scientific Organization: All rights reserved.

**Capsule Summary:** The linear and quadratic vibronic coupling in the ground state of *SCH*<sup>3</sup> radical was studied using adiabatic approximation, the first-order parameters,  $\beta_1$  is the most important and diagonalization allowed to determine the nature of first vibronic levels.

**Cite This Article As:** R. D. El Bouzaidi and A. El Gridani. 2016. Study of the vibronic coupling in the ground state of Methylthio radical. Chemistry International 2(2) 70-79.

# INTRODUCTION

The development of analytical methods, mainly the laserinduced fluorescence, significantly reduced the analysis time while providing emission spectra well resolved vibrationally. The study of short-lived species has been considered. Thus, a number of studies on simple organic and organometallic radicals have been published (Kochi, 1978; Reilly et al., 2008; Murakami et al., 2007; Fu et al., 2005; Gravel et al., 2004). The precise interpretation of the results requires methods appropriate to the calculations of open layers species. Pankratov (2004; 2005; 2012) reported scientific bases of the analytical characteristics prediction for azo coupling reactions. This work focuses on the organic radical CH<sub>3</sub>S. This radical is an important chemical intermediate in the environmental chemistry. It has been suggested that it may be an intermediate in the atmospheric oxidation by OH and NO<sub>3</sub> (Mellouki et al., 1977) of organic sulfides such as CH<sub>3</sub>SCH<sub>3</sub>, CH<sub>3</sub>SSCH<sub>3</sub> and CH<sub>3</sub>SH. It has been the subject of numerous spectroscopic studies, such as emission (Ohbayashi et al., 1977), the laser photodetachment (Janousek et al., 1980; Engelking et al., 1978), the electron paramagnetic resonance (EPR) (Gillbro , 1974), the IR matrix (Jacox , 1983), the laser-induced fluorescence (Chiang et al., 1991; Hsu et al., 1986).

In a previous paper (El Bouzaidi et al., 2000), we carried out a structural and vibrational study of  $CH_3S$  radical in the ground state and in the first excited state. It turned out

that the static Jahn-Teller effect in the ground state was low, in the order of 84 cm<sup>-1</sup>. The relaxation of the  $C_{3v}$  symmetry structure, in the same state, led to two  $C_s$  symmetry structures, *A*'and *A*". *A*' is slightly more stable than *A*". The lifting of degeneracy of the two potential energy surfaces may cause a significant vibronic coupling. In this work, taking into account all modes of vibration, we used the approximation "crude adiabatic" to determine the first vibronic states and the nature of the modes involved in each state.

In the framework of this approximation, Marinelli and Roch (1986) have formally treated the  $T_2 \otimes (a_1 + e + 2t_2)$ coupling problem with all linear and quadratic parameters in the case of Jahn-Teller instability for  $XY_4$  molecules with  $T_d$ configuration. Numerical applications have been done for  $NH_4$  in a type p Rhydberg  ${}^2T_2$  excited state (Cardy et al., 1988) and for  $CH4^+$  in the  ${}^2T_2$  state (Marinelli and Roche, 1990) formed by the removal of  $1t_2$  electron from the methane ground state. In the first case theoretical results confirm the assignment by Herzberg of the emission spectrum of the ammonium radical. In the second case theoretical results led to a calculated photoelectron spectrum of  $CH_4$  in agreement with the experimental one. Recently, El Bouzaidi et al. (2015) have studied the complete linear and quadratic vibronic coupling in the first excited state of MgCH<sub>3</sub> radical

#### **COMPUTATIONAL PROCEDURE**

#### **Construction of the Hamiltonian representation**

The vibronic stationary states may be obtained by solving the Schrödinger equation  $H\varphi_i(q,Q) = \varepsilon_i\varphi_i(q,Q)$  with  $H = T(Q) + H_e(q,Q)$ 

Where, q and Q are respectively the electronic and the nuclear coordinates for the vibrational motions. T(Q) is the kinetic energy operator for the nucler and  $H_e(q,Q)$  is the electronic Hamiltonian, which includes the Kinetic energy operator for the electrons and all the columbic interactions. The vibronic wavefunctions  $\varphi_i(q,Q)$  may, in principle, be expanded in any complete vibronic basis set. In practice, this basis is severely truncated by keeping only a few electronic wavefunctions corresponding to the states that are degenerate (Jahn-Teller case) or quasi-degenerate (pseudo-Jahn-Teller case) at some  $Q=Q_0$ . Currently  $H_e(q,Q)$  is expanded to second-order near the reference nuclear configuration  $Q_0$ .

$$H_e(q,Q) = H_e(q,Q_0) + \sum_{k=1}^{3N-6} \widetilde{\alpha_k}(q)Q_k + \frac{1}{2}\sum_{k,l=1}^{3N-6} \widetilde{\beta_{kl}}(q)Q_k Q_l$$
  
with  $\widetilde{\alpha_k}(q) = \left(\frac{\partial H_e(q,Q)}{\partial Q_k}\right)_{Q_0}$   
and  $\widetilde{\beta_{kl}}(q) = \left(\frac{\partial^2 H_e(q,Q)}{\partial Q_k \partial Q_l}\right)_{Q_0}$ 

The chosen model to process the vibronic coupling implies, therefore, two preliminary choices: The geometry of

reference and coordinates of displacement which will allow tending the space around the reference point.

# Choice of the reference structure

We can a priori choose any structure of the potential surface. But the choice, which seems the most logical considering the necessity to curtail the basis of electronic functions of manner to reduce the dimension of the problem, consists of choosing the Jahn-Teller point ( $C_{3v}$  structure of the ground state (El Bouzaidi et al., 2000) where cross the two potential surfaces A' and A''. The excitation allowing describing this structure is built with SCF molecular orbitals of the ground state. This reference is shown as the one which assures the continuity of the potential energy surface near the Jahn-Teller point.

## **Choice of displacement coordinates**

We have determined the displacement coordinates as follows: At the  $C_{3\nu}$  Jahn-Teller instability point (reference point), which correspond to a certain matrix *G* in the Wilson's method (Wilson et al., 1955), we associate a matrix *F* respecting the  $C_{3\nu}$  group properties of symmetry. In this work, this matrix *F* has been built by regrouping on the one hand, the matrix of force constants linked to the block of  $a_1$  symmetry calculated for the ground state (since the instability concerns only *e* symmetry modes) and on the other hand that of the *e* symmetry block of the  $C_{3\nu}$  symmetry first excited state.

The diagonalization of the matrix (*GF*) defines a system of normal coordinates:  $Q_1$ ,  $Q_2$ ,  $Q_3$  ( $a_1$  symmetry) and  $(Q_{4x_y}, Q_{4y})$ ,  $(Q_{5x_y}, Q_{5y})$ ,  $(Q_{6x_y}, Q_{6y})$  (e symmetry). The normal coordinates, thus described, define a reference potential  $V_0$  supposed harmonic, centered on Jahn-Teller point.

In Table 1, we have summarized the vibration frequencies (El Bouzaidi et al., 2000) associated with different modes, together with the corresponding constants intervening in the definition of the reference potential  $V_0$ . In the crude adiabatic approximation, the matrix elements of H can be expressed as follows:

$$H_{nm,ij} = \langle X_i(Q) | \delta_{mn} E_n(Q_0) + \Delta U_{nm}(Q) | X_j(Q) \rangle_Q \qquad (m,n=x,y)$$

Limiting the electronic functions basis to degenerate functions  $\Psi_x^0$  and  $\Psi_y^0$  at the reference point. The vibrational Xj(Q) are taken as the Eigen functions of an arbitrary  $C_{3\nu}$  harmonic Hamiltonian  $T(Q)+V_0$ . The evaluation of matrix elements  $H_{nm,ij}$  requires, therefore, only the elementary integrals.

 $\langle X_i(Q) | Q_k | X_j(Q) \rangle$ ,  $\langle X_i(Q) | Q_k^2 | X_j(Q) \rangle$ ,  $\langle X_i(Q) | Q_k Q_l | X_j(Q) \rangle$ .

For this we need the terms  $\Delta U_{nm}(Q)$  which we rewrite:

$$\Delta U_{nm}(Q) = \sum_{k} \alpha_{k}^{nm} Q_{k} + \frac{1}{2} \sum_{kl} \beta_{kl}^{nm} Q_{k} Q_{l}$$

#### El Bouzaidi and El Gridani / Chemistry International 2(2) (2016) 70-79

iscientic.org.

| Table 1: [                               | Definition of           | harmonic rei             | ference poter           | itial Vo                |                         |                          |                          |                          |                          |
|------------------------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| $Q_i$                                    | Q1                      |                          | Q2                      | Q3                      |                         | $Q_{4x}$ , $Q_{4y}$      | Q5x,Q                    | <b>2</b> 5y              | $Q_{6x}$ , $Q_{6y}$      |
| <i>v<sub>i</sub></i> (cm <sup>-1</sup> ) | 7                       | 38                       | 1149                    | 30                      | 030                     | 605                      | 148                      | 5                        | 3198                     |
| <i>k</i> <sub>i</sub> (a.u.)             | 0,336                   | 55.10 <sup>-2</sup>      | 0,5239.10-2             | 0,13                    | 81.10-1                 | 0,2759.10-2              | 0,6772                   | .10-2                    | 0,1461.10-1              |
| Table 2: V                               | values of par           | ameters inte             | rvening in th           | e formulatio            | n of vibronic           | coupling                 |                          |                          |                          |
| K1                                       | K <sub>2</sub>          | K <sub>3</sub>           | $K_4$                   | K5                      | K <sub>6</sub>          | K'4                      | K"4                      | K'5                      | K"5                      |
| 0,3484.10 <sup>-</sup> 2                 | 0,5299.10-2             | 0,1384.10-1              | 0,2759.10-2             | 0,6772.10-2             | <b>0,1461.10</b> -1     | 0,3628.10-2              | 0,6704.10-2              | 0,4580.10-2              | 0,5328.10 <sup>-2</sup>  |
| K' <sub>6</sub>                          | K" <sub>6</sub>         | $\beta_1$                | $\beta_2$               | β <sub>3</sub>          | γ14                     | γ15                      | γ16                      | γ <sub>24</sub>          | γ25                      |
| 0,1429.10 <sup>-</sup>                   | 0,1421.10-1             | -0,1145.10 <sup>-2</sup> | 0,4128.10 <sup>-3</sup> | 0,3100.10 <sup>-3</sup> | 0,3548.10 <sup>-3</sup> | -0,6156.10-4             | -0,4744.10 <sup>-3</sup> | -0,2962.10 <sup>-3</sup> | 0,4820.10 <sup>-3</sup>  |
| γ26                                      | γ <sub>34</sub>         | γ 35                     | γ36                     | γ'45                    | γ'46                    | γ'56                     | $\gamma''_{45}$          | γ"46                     | γ"56                     |
| 0,3423.10 <sup>-</sup><br>4              | 0,2237.10 <sup>-3</sup> | 0,1272.10-3              | 0,3179.10-4             | 0,3155.10 <sup>-3</sup> | -0,3178.10-5            | -0,1282.10 <sup>-3</sup> | 0,1406.10-3              | -0,1891.10 <sup>-3</sup> | -0,1390.10 <sup>-3</sup> |

Table 3: Study of the three first excited vibronics levels convergence

| NT                                      | 3                                       | 6                                       | 9                                                                      | 12                                      | 15<br>(0 <sup>K</sup> 0 <sup>0</sup> 0 <sup>N</sup> 0 <sup>N</sup> 0 <sup>N</sup> 0 <sup>N</sup> |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------|
| $(Q_1^0 Q_2^0 Q_3^0 Q_4^1 Q_5^2 Q_6^1)$ | $(Q_1^0 Q_2^0 Q_3^0 Q_4^1 Q_5^1 Q_6^1)$ | $(Q_1^0 Q_2^0 Q_3^0 Q_4^2 Q_5^2 Q_6^2)$ | $(Q_1^{\circ}Q_2^{\circ}Q_3^{\circ}Q_4^{\circ}Q_5^{\circ}Q_6^{\circ})$ | $(Q_1^0 Q_2^0 Q_3^0 Q_4^4 Q_5^4 Q_6^4)$ | $(Q_1^{\prime} Q_2^{\circ} Q_3^{\circ} Q_4^{\circ} Q_5^{\circ} Q_6^{\circ})$                     |
|                                         |                                         |                                         |                                                                        |                                         |                                                                                                  |
|                                         | 0.038547                                | 0.038005                                | 0.037986                                                               | 0.037929                                | 0.037928                                                                                         |
|                                         | 0.041381                                | 0.041128                                | 0.040883                                                               | 0.040885                                | 0.040876                                                                                         |
| Vibronics A <sub>1</sub>                | 0.046143                                | 0.044269                                | 0.043162                                                               | 0.042682                                | 0.042662                                                                                         |
|                                         |                                         |                                         |                                                                        |                                         |                                                                                                  |
|                                         | 0.040159                                | 0.039215                                | 0.039084                                                               | 0.039055                                | 0.039051                                                                                         |
|                                         | 0.041861                                | 0.041576                                | 0.041435                                                               | 0.041418                                | 0.041413                                                                                         |
| Vibronics A <sub>2</sub>                | 0.046107                                | 0.044540                                | 0.043870                                                               | 0.043161                                | 0.043111                                                                                         |
|                                         |                                         |                                         |                                                                        |                                         |                                                                                                  |
|                                         | 0.035571                                | 0.035306                                | 0.035267                                                               | 0.035255                                | 0.035252                                                                                         |
|                                         | 0.041205                                | 0.040329                                | 0.039916                                                               | 0.039749                                | 0.039710                                                                                         |
| Vibronics <i>ɛ</i>                      | 0.041505                                | 0.041287                                | 0.041072                                                               | 0.041058                                | 0.041017                                                                                         |
|                                         |                                         |                                         |                                                                        |                                         |                                                                                                  |

 $\alpha_k^{nm} = \langle \Psi_n^0(q, Q_0) | \tilde{\alpha}_k(q) | \Psi_m^0(q, Q_0) \rangle$ 

(First-order parameters)

 $\beta_{kl}^{nm} = \left\langle \Psi_n^0(q, Q_0) \middle| \tilde{\beta}_{kl}(q) \middle| \Psi_m^0(q, Q_0) \right\rangle$ 

(quadratic and bilinear parameters)

In the present case there are a priori 162 integrals to be evaluated. The application of group theory and  $C_{3v}$  symmetry of the reference configuration proves that there are only 30 integrals (Cardy et al., 1988), distributed as follow:

First-order parameters:  $\beta_1$ ,  $\beta_2$  and  $\beta_3$  ( $\beta_i = \alpha_{jy}^{xx} = -\alpha_{jy}^{yy} = \alpha_{jx}^{xy}$ , *i=1,2,3 j=4,5,6*)

Non-crossed second-order parameters: k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>, k<sub>4</sub>, k<sub>5</sub>, k<sub>6</sub>,  $k'_4$ ,  $k''_4$ ,  $k''_5$ ,  $k''_5$ ,  $k'_6$  and  $k''_6$ 

$$\begin{aligned} &(k_i = \beta_{ij}^{xx} = \beta_{ij}^{yy}, \ i = j = 1,2,3 \quad ; \quad k'_i = \beta_{ixix}^{xx} = \beta_{iyiy}^{yy} , \\ &k_i^{"} = \beta_{iyiy}^{xx} = \beta_{ixix}^{yy} , \ i = 4,5,6 \end{aligned}$$

Crossed second-order parameters:  $\gamma_{14}$ ,  $\gamma_{15}$ ,  $\gamma_{16}$ ,  $\gamma_{24}$ ,  $\gamma_{25}$ ,  $\gamma_{26}$ ,  $\gamma_{34}$ ,  $\gamma_{35}$ ,  $\gamma_{36}$ ,  $\gamma'_{45}$ ,  $\gamma'_{46}$ ,  $\gamma'_{56}$ ,  $\gamma''_{45}$ ,  $\gamma''_{46}$  and  $\gamma''_{56}$  ( $\gamma_{ij} = \beta_{ijy}^{xx} = -\beta_{ijy}^{xy} = \beta_{ijx}^{xy}$ , i = 1,2,3 j = 4,5,6;

$$\begin{aligned} \gamma'_{ij} &= \beta^{xx}_{ixjx} = \beta^{yy}_{iyjy} , \ \gamma^{"}_{ij} = \beta^{xx}_{iyjy} = \beta^{yy}_{ixjx} , \ i = 4,5 \ j \\ &= 5,6 \ i \neq j \ \end{aligned}$$

#### El Bouzaidi and El Gridani / Chemistry International 2(2) (2016) 70-79

|                                    | Energies | $\Delta E^{(14)}$          |
|------------------------------------|----------|----------------------------|
| Symmetry of the considered state   | (a.u.)   | (cm <sup>-1</sup> )        |
| $1\varepsilon(a_1)$ (Z.P.E. state) | 0.035589 |                            |
| $2\varepsilon(a_1)$                | 0.038177 | $\Delta E_{01}^{14} = 568$ |
| 1A1(e)                             | 0.038917 | $\Delta E_{02}^{14} = 730$ |
| 1A2(e)                             | 0.039318 | $\Delta E_{03}^{14} = 250$ |
| 3 <i>ɛ</i> ( <i>e</i> )            | 0.040330 | $\Delta E_{04}^{14} = 169$ |

| <b>I ADIC T.</b> NEULUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU |
|----------------------------------------------------------|
|----------------------------------------------------------|

## **Table 5:** Put in evidence the essential coupling parameters

| Symmetry of the considered         | Energies | $\Delta E^{(14)}$          | $\Delta E^{(21)}$          |
|------------------------------------|----------|----------------------------|----------------------------|
| state                              | (a.u.)   | (cm <sup>-1</sup> )        | (cm <sup>-1</sup> )        |
| $1\varepsilon(a_1)$ (Z.P.E. state) | 0.035589 |                            |                            |
| $2\varepsilon(a_1)$                | 0.038177 | $\Delta E_{01}^{14} = 568$ | $\Delta E_{01}^{21} = 586$ |
| 1A1(e)                             | 0.038917 | $\Delta E_{02}^{14} = 730$ | $\Delta E_{02}^{21} = 727$ |
| 1A <sub>2</sub> (e)                | 0.039318 | $\Delta E_{03}^{14} = 250$ |                            |
| 3 <i>ɛ</i> ( <i>e</i> )            | 0.040330 | $\Delta E_{04}^{14} = 169$ |                            |

| Table 6: Study of Q5 couplin       | g        |                        |                                            |
|------------------------------------|----------|------------------------|--------------------------------------------|
| Symmetry of the                    | Energies | ΔΕ                     | $\Delta E_{exp}$                           |
| considered state                   | (a.u.)   | (cm <sup>-1</sup> )    | (cm <sup>-1</sup> ) (Chiang and Lee, 1991) |
| $\varepsilon(a_1)$ (Z.P.E. state)  | 0.035802 |                        |                                            |
| $\varepsilon(a_1)$                 | 0.039128 | $\Delta E_{01} = 730$  | $\Delta E_{01} = 727$                      |
| A2(e)                              | 0.042576 | $\Delta E_{02} = 1487$ | $\Delta E_{02} = 1496$                     |
| <i>A</i> <sub>1</sub> ( <i>e</i> ) | 0.042749 | $\Delta E_{23} = 38$   |                                            |
| ε(е)                               | 0.042826 | $\Delta E_{24} = 34$   |                                            |

These integrals may be considered as adjustable parameters so that the two model potential surfaces  $E_1$  and  $E_2$  which obey the equation  $det|\Delta U_{mn} - E\delta_{mn}| = 0$  fit to the same potential surfaces derived from some quantum mechanical electronic energy calculations.

# Evaluation of the integrals intervening in the formulation of vibronic coupling

The used procedure can be summarized in three points:

- Choice of a cup in the potential surface (activation of the mode). This choice is guided by the aimed parameters.

- Calculation, at *MP2* level, of *A*' and *A*" states in a number of points of the direction in the potential surface defined by the activated modes. We built the excitation allowing describing the two structures with *SCF* ground state M.O.
- Simultaneous adjustment, by a less square method, of  $H_e(q, Q_0)$  representation, on the two calculated surfaces.

# Calculation of vibronic coupling in SCH<sub>3</sub> radical's ground state <sup>2</sup>E : Diagonalization of the hamiltonian

Computer codes: A first code gives matrices containing the coefficients of symmetric vibronics  $[\Gamma]$  and  $[\Gamma]$ <sup>+</sup> for an arbitrary choice of maximal vibrational quantum members  $V_i$  (*i*=1,2,...,9) and for each irreducible representation of  $C_{3v}$ .

A second code constructs the matrix [H] and a third code gives the representation of the Hamiltonian in the adapted symmetry basis set  $[HS] = [\Gamma]^+[H][\Gamma]$  for each irreducible representation.

Finally the three different blocks of [*HS*] are diagonalized by the Davidson algorithm (Davidson, 1975).

### **RESULTS AND DISCUSSION**

Table 2 shows the values of the 30 parameters. We have carried the values resulting from an arithmetic mean when different determinations were possible and which are kept for the calculation of vibronic coupling. The obtained results show that:

At the level of first-order parameters, the parameter  $\beta_1$  is the most important. (ii) The gap  $|k'_4 - k''_4|$  is greater than gaps  $|k'_5 - k''_5|$  and  $|k'_6 - k''_6|$  at the level of non-crossed second-order terms. (iii) Probably, the crossed second-order parameters,  $\gamma_{ij}$ , will not have any effect on the vibronic coupling.

#### Limitation of the problem to e symmetry normal modes

In a first time, we have activated only normal modes of *e* symmetry ( $Q_4$ ,  $Q_5$  and  $Q_6$ ), assets in Jhan-Teller effect (El Bouzaidi et al., 2000), by exciting them equally ( $V=V_4=V_5=V_6$ ). The vibrational excitation number of  $a_1$  symmetry modes are posed equal to zero ( $V_1=V_2=V_3=0$ ). Then, we varied the vibrational quantum number *V* from 1 to 5, therefore *NT* from 3 to 15 where,  $NT = \sum_{i=1}^{6} V_i$ .

The obtained results are recorded in Table 3 (for each symmetry we have carried the three lowest vibronic states).

From the analysis of this table, it was observed that whatever the value of *NT* considered, the hierarchy of vibronic levels was the same. This result was in agreement with that of a previous work (El Bouzaidi et al., 2015).

As shown in Figure 1, we carried the relative position of the different vibronic levels of symmetry  $A_1$ ,  $A_2$ ,  $\varepsilon$  calculated in the framework of the application NT=21. We adopted for the vibronic levels the following notation: n X(x) Where, n: the number of state in each Irreducible representation (states are classified by ascendant order of

the energy), *X*: the symmetry of the vibronic state, *x*: the symmetry of the implied vibration mode.

A priori, particularly it was noted that the second vibronic excited state  $2\varepsilon(a_1)$  involves an  $a_1$  symmetry mode, while the first  $1A_1(e)$ , the third  $1A_2(e)$ , and the fourth  $3\varepsilon(e)$  excited vibronic states involve as through an e symmetry mode. To specify the nature of these implied modes, it is necessary to analyze the vibronic function of each state.

# Analysis of the vibronic function of the first four excited states

To simplify notations, we reduced the writing of the vibrational functions, product of nine polynomial of Hermite, to only the active modes with in exponent the value of the vibrational quantum number associated with each mode and the symbol (\*) to be able to differentiate, thereafter, the basis of the modes for the excited state from that of the ground state.

Vibronic function of the state  $2\varepsilon(a_1)$ : This development carries essentially on the  $Q_1$  mode with a weak contribution of  $Q_{4x}$  and  $Q_{4y}$  modes. Therefore the vibration movement implied in this state is that of *C*-*S* stretching.

Vibronic functions of excited states  $1A_1(e)$ ,  $1A_2(e)$ and  $3\varepsilon(e)$ : The analysis of these three vibronic functions shows that the implied vibration modes in each of corresponding states are the same namely  $Q_{4x}$  and  $Q_{4y}$ . Consequently, the active vibration movement is the methylrocking one.

We can therefore conclude that these three states result from the coupling of  $Q_{4x}$  and  $Q_{4y}$  modes (*e* modes) by means of electrons movement (electronic state *E*). Therefore a coupling of type:

 $E \otimes e = A_1 + A_2 + \varepsilon$  (schematized in Fig. 2).

In the case where the vibronic coupling is neglected (part a of Figure 2), we represented transitions, towards the lowest vibrational level  $a_1$  of the ground state, on the one hand from the lowest vibrational level  $a_1(\Delta_1)$  of the first excited state and on the other hand from the vibrational level  $e(\Delta_2)$  implying  $Q_{4x}$  and  $Q_{4y}$  modes of this same state. The value of the frequency  $v_4$  associated with  $Q_{4x}$  and  $Q_{4y}$  modes, deduced experimentally by emission spectroscopy from the difference  $(\Delta_2 - \Delta_1)$ , is estimated in this work at 605 cm<sup>-1</sup>. The raising of degeneracy of these modes ( $Q_{4x}$  and  $Q_{4y}$ ) by vibronic coupling (part b of Figure 2) leads respectively to three equivalents transitions of energies  $\Delta_2^{(1)}$ ,  $\Delta_2^{(2)}$  and  $\Delta_2^{(3)}$ , from  $1A_1(e)$ ,  $1A_2(e)$  and  $3\varepsilon(e)$  levels implying these modes. Therefore, we predicted that there are three bands around 572, 822 and 994 cm<sup>-1</sup> in the emission spectrum.

In summary, beside transitions from  $1A_1(e)$ , we predicted equivalent transitions from  $1A_2(e)$  and  $3\varepsilon(e)$  levels which will be distant of 250 cm<sup>-1</sup> (822-572) and 172 cm<sup>-1</sup> (994-822), respectively.

## Put in evidence the essential coupling parameters

| Summetry of the                   | Energies | ΔΕ                     | $\Delta E_{exp}$ (cm <sup>-1</sup> ) |
|-----------------------------------|----------|------------------------|--------------------------------------|
| considered state                  | (a.u.)   | (cm <sup>-1</sup> )    | (Chiang and Lee, 1991)               |
| $\varepsilon(a_1)$ (Z.P.E. state) | 0.035897 |                        |                                      |
| $\varepsilon(a_1)$                | 0.039223 | $\Delta E_{01} = 730$  | $\Delta E_{01} = 727$                |
| $A_1(e)$                          | 0.048659 | $\Delta E_{02} = 2801$ | $\Delta E_{02} = 2706$               |
| $A_2(e)$                          | 0.048718 | $\Delta E_{23} = 13$   |                                      |
| ε(e)                              | 0.048750 | $\Delta E_{24} = 7$    |                                      |
|                                   |          |                        |                                      |

**Table 7:** Study of *O*<sup>6</sup> coupling

In the preceding paragraph, we analyzed the vibronic functions for the lowest four excited states  $1A_1(e)$ ,  $1A_2(e)$ ,  $2\varepsilon(a_1)$  and  $3\varepsilon(e)$ . This analysis has shown that these states involve  $Q_1$ ,  $Q_{4x}$  and  $Q_{4y}$  modes. We can, therefore, hope to reduce the dimension of the vibrational basis and to take into account only these modes.

For this, we consider the applications NT=2,4,6,8,10,12 of  $Q_1^V Q_2^0 Q_3^0 Q_4^V Q_5^0 Q_6^0$  type in which the  $Q_1$  and  $Q_4$  mode are activated of the same manner.

The results of the Hamiltonian diagonalization relative to the application NT=14, for which we have obtained a convergence of 10<sup>-6</sup> a.u., are summarized in Table 4.

These results show that, by report to  $1\varepsilon(a_1)$  (Z.P.E.) level, the energy gaps  $\Delta E_{01}^{(14)}$ ,  $\Delta E_{02}^{(14)}$ ,  $\Delta E_{03}^{(14)}$  and  $\Delta E_{04}^{(14)}$  of the lowest four excited states  $1A_1(e)$ ,  $1A_2(e)$ ,  $2\varepsilon(a_1)$  and  $3\varepsilon(e)$  are equal to those obtained previously for the application NT=21.

We can therefore conclude that the vibrational basis  $(Q_1, Q_4)$  is sufficient for the determination of the lowest vibronic levels.

At this level, we can easily list parameters that appear essential for the calculation of these states. These parameters are as follows:

- Parameters  $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_4$ ,  $k_5$  and  $k_6$  intervening in the definition of the reference harmonic potential  $V_0$ .
- The first-order parameter corresponding to  $Q_4$ , namely  $\beta_1$ .
- The second-order parameters  $k'_4$ ,  $k''_4$ ,  $k'_5$ ,  $k''_5$ ,  $k'_6$ ,  $k''_6$  and  $\gamma_{14}$  (coupling term since  $Q_1$  and  $Q_4$  mode are active).

In these conditions, the results of the Hamiltonian diagonalization are regrouped in Table 5. We obviously verified that the first obtained states as well as the corresponding energy values are rigorously the same as those of Table 4. It was convenient therefore to note that the taken fourteen parameters are well adapted to the calculation of the first vibronic levels involving  $Q_1$  and  $Q_4$  modes.

# Vibronic coupling study of $Q_4$ and $Q_5$ modes by means of electron movement

In the preceding paragraph, we have shown that the vibrational basis  $(Q_1, Q_4)$  is sufficient to the study of  $Q_4$  mode coupling. In the following, we take into account only  $Q_1$  and  $Q_5$  modes to the coupling study of  $Q_5$  mode and only  $Q_1$  and  $Q_6$  modes to that of  $Q_6$  mode.

Case of the vibrational basis ( $Q_1$ ,  $Q_5$ ): We have considered applications NT=2,4,6,8,10,12,14 of  $Q_1^V Q_2^0 Q_3^0 Q_4^0 Q_5^V Q_6^0$  type in which this time, only  $Q_1$  and  $Q_5$ modes are excited with quantum number V (varying from 1 to 7).

To the extent where the vibrational functions basis is limited to  $Q_1$  and  $Q_5$  modes, the new list of coupling parameters, which seems to be compatible with this basis, is as follows:

- *k*<sub>1</sub>, *k*<sub>2</sub>, *k*<sub>3</sub>, *k*<sub>4</sub>, *k*<sub>5</sub> and *k*<sub>6</sub> parameters defining the reference potential *V*<sub>0</sub>.
- Parameter of first-order corresponding to  $Q_5$  ( $\beta_2$ ).
- Parameters of second-order  $k'_4$ ,  $k''_4$ ,  $k''_5$ ,  $k''_5$ ,  $k''_6$ ,  $k''_6$  and  $\gamma_{15}$ .

A satisfying convergence of the order of  $10^{-6}$  a.u. is obtained for the application NT=14 ( $Q_1^7, Q_2^0, Q_3^0, Q_4^0, Q_5^7, Q_6^0$ ), the results of which are presented in Table 6.

The energy gap,  $\Delta E_{01}$  (730 cm<sup>-1</sup>) of the first excited level involving the  $Q_1$  mode, by report to Z.P.E. level, was in good agreement with the experimental frequency of C-S sstretching mode (727cm<sup>1</sup>) (Chiang and Lee, 1991). Similarly the gap ( $\Delta E_{02}$ ) between Z.P.E. level and  $1A_1(e)$  state is very close to the measured frequency of C-H a-bending (1496 cm<sup>-1</sup>). Furthermore, the analysis of the vibronic function of the three other obtained excited levels  $A_1(e)$ ,  $A_2(e)$  and  $\varepsilon(e)$ shows the implication of  $Q_{5x}$  and  $Q_{5y}$  modes (antisymmetric *C*-*H* stretching).

These states are therefore the result of the coupling of these modes by means of electrons movement (coupling of

ISSN: 2410-9649

El Bouzaidi and El Gridani / Chemistry International 2(2) (2016) 70-79

iscientic.org.

type  $E \otimes e = A_1 + A_2 + \varepsilon$  ). If  $\Delta E_{02}$ ,  $\Delta E_{23}$  and  $\Delta E_{24}$  designate energy gaps, respectively, between:

- Z.P.E. state and A<sub>2</sub>(e) state.
- A<sub>2</sub>(e) and A<sub>1</sub>(e).
- $A_2(e)$  and  $\epsilon(e)$ .

- The Z.P.E. level and the first excited level  $\varepsilon$  ( $a_1$ ) implying the  $Q_1$  mode.

- The Z.P.E. level and the second level  $A_1$  (*e*) involving the  $Q_6$  mode (antisymmetric *C*-*H* bending).

- Vibronic states  $A_1(e)$  and  $A_2(e)$  (implying also the Q<sub>6</sub> mode).

$$V_0 = \frac{1}{2}k_1Q_1^2 + \frac{1}{2}k_2Q_2^2 + \frac{1}{2}k_3Q_3^2 + \frac{1}{2}k_4(Q_{4x}^2 + Q_{4y}^2) + \frac{1}{2}k_5(Q_{5x}^2 + Q_{5y}^2) + \frac{1}{2}k_6(Q_{6x}^2 + Q_{6y}^2)$$
(Eq. 1)

where 
$$k_i(a.u.) = 4,56.10^{-6}v_i(cm^{-1})$$

$$\varphi_{2\varepsilon(a_1)} = -0.836(Q_1^* \Psi_x^0) + 0.285 \left[ \frac{1}{\sqrt{2}} Q_1^* Q_{4y}^* \Psi_x^0 + \frac{1}{\sqrt{2}} Q_1^* Q_{4x}^* \Psi_y^0 \right]$$
(Eq. 2)  
- State  $IA_I(e)$ 

$$\varphi_{1A_1(e)} = -0.843 \left[ \frac{1}{\sqrt{2}} Q_{4y}^* \Psi_y^0 + \frac{1}{\sqrt{2}} Q_{4x}^* \Psi_x^0 \right] + 0.396 \left[ \frac{1}{\sqrt{2}} Q_{4y}^* ^2 \Psi_y^0 - \frac{1}{\sqrt{2}} Q_{4x}^* Q_{4y}^* \Psi_x^0 - \frac{1}{2} Q_{4x}^* ^2 \Psi_y^0 \right]$$

- State  $lA_2(e)$ 

$$\varphi_{1A_2(e)} = -0.865 \left[ \frac{1}{\sqrt{2}} Q_{4y}^* \Psi_x^0 - \frac{1}{\sqrt{2}} Q_{4x}^* \Psi_y^0 \right] - 0.283 \left[ \frac{1}{\sqrt{2}} Q_{4y}^* ^2 \Psi_x^0 + \frac{1}{\sqrt{2}} Q_{4x}^* Q_{4y}^* \Psi_y^0 - \frac{1}{2} Q_{4x}^* ^2 \Psi_x^0 \right]$$

- State 
$$3\varepsilon(e)$$

$$\varphi_{3\varepsilon(e)} = -0.746 \left[ \frac{1}{\sqrt{2}} Q_{4y}^* \Psi_x^0 + \frac{1}{\sqrt{2}} Q_{4x}^* \Psi_y^0 \right] + 0.488 \left[ \frac{1}{\sqrt{2}} Q_{4y}^* ^2 \Psi_x^0 + \frac{1}{\sqrt{2}} Q_{4x}^* ^2 \Psi_x^0 \right]$$
(Eq. 3)

Beside transitions from  $A_2(e)$  level at 1567 cm<sup>-1</sup> ( $\Delta E_{02}$ ), we expected an equivalent transitions from  $A_1(e)$  and  $\varepsilon(e)$  levels and which will be distant of 22 cm<sup>-1</sup> ( $\Delta E_{23}$ ) and 34 cm<sup>-1</sup> ( $\Delta E_{24}$ ), respectively.

Case of the vibrational basis  $(Q_1, Q_6)$ : In this case, the vibrational functions basis was limited to  $Q_1$  and  $Q_6$  modes and the adapted parameters are as follows:

- Parameters defining the reference potential *V*<sub>0</sub>.
- The first-order parameter corresponding to  $Q_6$  ( $\beta_3$ ).
- Second-order parameters  $k'_4$ ,  $k''_4$ ,  $k'_5$ ,  $k''_5$ ,  $k'_6$ ,  $k''_6$  and  $\gamma_{16}$ .

The obtained results are summarized in Table 7. We signal that we have obtained a convergence of the order of  $10^{-6}$  a.u. for the application NT=14 ( $Q_1^7, Q_2^0, Q_3^0, Q_4^0, Q_5^0, Q_6^7$ ). Considering  $\Delta E_{01}, \Delta E_{02}, \Delta E_{23}$  and  $\Delta E_{24}$  the energy gaps respectively between:

- Vibronic states  $A_1$  (e) and  $\varepsilon$  (e) (implying the same mode Q<sub>6</sub>).

The gaps  $(\Delta E_{01})$  and  $(\Delta E_{02})$  are close to observed frequencies of C-S s-stretching (727 cm<sup>-1</sup>) and C-H a-bending (2706 cm<sup>-1</sup>) respectively. The last three excited levels are therefore obtained by coupling of the  $Q_6$  mode by means of the electrons movement (coupling  $E \otimes e = A_1 + A_2 + \varepsilon$ ). Therefore, we expected that for each transition from  $A_1$  (*e*) level at 2801 cm<sup>-1</sup>, to analogous transition from the two other levels  $A_2(e)$  and  $\varepsilon(e)$  and which will be distant of 13 and 7 cm<sup>-1</sup>, respectively.

#### CONCLUSIONS

In this paper, we have performed a vibronic coupling study in the ground state of  $SCH_3$  radical using a methodology based on the crude adiabatic approximation. Firstly, we evaluated the electronic integrals intervening in the formulation of the vibronic coupling and which are used to build the Hamiltonian. Results revealed that;



**Fig. 1:** Relative position of the different vibronic states A1, A2 and ε (calculated for application NT=21)



**Fig. 2:** Raising of *Q*<sub>4x</sub> and *Q*<sub>4y</sub> modes degeneracy by vibronic coupling

At the level of first-order parameters, the parameter  $\beta_1$  was the most important.

The gap  $|k'_4 - k''_4|$  was greater than gaps  $|k'_5 - k''_5|$  and  $|k'_6 - k''_6|$  at the level of non-crossed second-order terms.

We then diagonalized the representation of the Hamiltonian. This diagonalization allowed to determine the nature of first vibronic levels, therefore the implied modes in this coupling ( $Q_1$ ,  $Q_{4x}$  and  $Q_{4y}$ ), and to surround essential coupling parameters.

Energy gaps,  $A_1$ - $A_2$  and  $A_2$ - $\varepsilon$ , resulting of splitting of the level *e* ( $Q_{4x}$  and  $Q_{4y}$  modes) by means of electrons movement, have been evaluated at 250 and 169 cm<sup>-1</sup>, respectively.

Concerning the high excited vibronic states implying the  $Q_5$  and  $Q_6$  modes, the revealed splitting due to the Jahn-Teller coupling  $E \otimes e = A_1 + A_2 + \varepsilon$ , are in this case weaker. The corresponding energy gaps are evaluated to 38 cm<sup>-1</sup> ( $A_2$ - $A_1$ ), and 17 cm<sup>-1</sup> ( $A_2$ - $\varepsilon$ ) for  $Q_5$  mode, 13 cm<sup>-1</sup> ( $A_2$ - $A_1$ ) and 7 cm<sup>-1</sup> ( $A_2$ - $\varepsilon$ ) for  $Q_6$  mode.

#### REFERENCES

- Cardy, H., Liotard, D., Dargelos, A., Marinelli, F., & Roche, M. 1988. Ab initio CI study of the emission spectrum and the vibronic coupling in the 3p 2 T 2 state of the ammonium radical. Chemical physics 123(1), 73-83.
- Chiang, S.Y., Lee, Y.P., 1991. Vibronic analysis of the à 2A1–X 2E laser-induced fluorescence of jet-cooled CH3S. The Journal of Chemical Physics 95(1), 66-72.
- Davidson, E.R., 1975. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. Journal of Computational Physics, 17(1), 87-94.
- El Bouzaidi, R.D., El Hammadi, A., Boutalib, A., El Mouhtadi, M. 2000. Ab initio-CI study of SCH 3 radical: analysis of the Jahn–Teller effect in the ground state. Journal of Molecular Structure: THEOCHEM 497(1), 197-203.
- El Bouzaidi, R.D., El Merbouh, B., Bourjila, M., Tijar, R., El Gridani, A., 2015. Study of the vibronic coupling in the first excited state of MgCH<sub>3</sub> radical. Moroccan Journal of Chemistry 3(2), 190-201.
- Endo, Y., Saito, S., Hirota, E., 1986. The microwave spectrum of the thiomethoxy radical CH<sub>3</sub>S. The Journal of Chemical Physics 85(4), 1770-1777.
- Engelking, P.C., Ellison, G.B., Lineberger, W.C., 1978. Laser photodetachment electron spectrometry of methoxide, deuteromethoxide, and thiomethoxide: Electron affinities and vibrational structure of CH30, CD30, and CH3S. The Journal of Chemical Physics 69(5), 1826-1832.
- Fu, Y., Liu, L., Yu, H.Z., Wang, Y.M., Guo, Q.X. 2005. Quantumchemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. Journal of the American Chemical Society 127(19), 7227-7234.
- Gillbro, T., 1974. Esr and structure of sulfur-centered radicals and radical ions.  $\gamma$ -Irradiated dimethyl disulfide and

methane thiol single crystals at 77° k. Chemical Physics 4(3), 476-482.

- Gravel, J.F., Luo, Q., Boudreau, D., Tang, X.P., Chin, S.L. 2004. Sensing of halocarbons using femtosecond laser-induced fluorescence. Analytical chemistry 76(16), 4799-4805.
- Hsu, Y.C., Liu, X., & Miller, T.A., 1989. Rotational analysis of  $\tilde{A}$ 2A1 $\leftrightarrow$   $\tilde{X}$  2E electronic transition of the jet-cooled methylthio radical. The Journal of Chemical Physics 90(12), 6852-6857.
- Jacox, M.E., 1983. The reaction of F atoms with CH3SH. Vibrational spectroscopy and photochemistry of CH<sub>3</sub>S and CH<sub>2</sub>SH hydrogen-bonded to HF. Canadian Journal of Chemistry 61(5), 1036-1043.
- Janousek, B.K., Brauman, J.I. 1980. Electron photodetachment of thiomethoxyl and deuterothiomethoxyl anions: Electron affinities, vibrational frequencies, and spinorbit splitting in CH<sub>3</sub>S<sup>--</sup> and CD3S<sup>-</sup>. The Journal of Chemical Physics 72(1), 694-700.
- Kochi, J., 1978. Organometallic mechanisms and catalysis: the role of reactive intermediates in organic processes. Academic Press, New York, pp. 65–68
- Marinelli, F., & Roche, M. 1986. Vibronic wavefunctions for XY 4 molecules in a T 2 electronic state. Chemical Physics Letters 130(5), 384-389.
- Marinelli, F., Roche, M., 1990. A crude adiabatic computation of the photoelectron spectrum of CH 4. Chemical Physics 146(1), 219-223.
- Mellouki, A., Jourdain, J.L., Le Bras, G., 1977. Chemical Physics Letters 148, 231.
- Murakami, Y., Endo, K., Ohta, I., Nosaka, A. Y., Nosaka, Y. 2007. Can OH radicals diffuse from the UV-irradiated photocatalytic TiO<sub>2</sub> surfaces? Laser-induced-fluorescence study. The Journal of Physical Chemistry C 111(30), 11339-11346.
- Ohbayashi, K., Akimoto, H., Tanaka, I., 1977. Emission spectrum of CH 3 S radical. Chemical Physics Letters 52(1), 47-49.
- Pankratov, A.N., 2004. Azo-Coupling Reactions Used in Analytical Chemistry: The Role of Reactants, Intermediates, and Aqueous Medium. Helvetica Chimica Acta 87(6), 1561-1573.
- Pankratov, A.N., 2005. Analytical Azo Coupling Reactions: An Insight from the Viewpoint of Quantum Chemistry" (in Russian). Journal of Analytical Chemistry (in Russian: Zhurnal Analiticheskoi Khimii) 60, No. 10, 1036-1046. English Translation: Pankratov, A.N., 2005. Analytical Azo Coupling Reactions: A Quantum-Chemical Consideration. Journal of Analytical Chemistry 60(10), 920-929.
- Pankratov, A.N., 2012. Mechanism of the Griess Analytical Reaction: A Quantum Chemical Substantiation of Some Stages for Diazotization and Azo Coupling (in Russian). Applied Analytical Chemistry (in Russian: Prikladnaya Analiticheskaya Khimiya) 3, No. 2 (8), 36-51.
- Reilly, N.J., Kokkin, D.L., Nakajima, M., Nauta, K., Kable, S. H., Schmidt, T.W., 2008. Spectroscopic observation of the

resonance-stabilized 1-phenylpropargyl radical. Journal of the American Chemical Society 130(10), 3137-3142.

- Suzuki, M., Inoue, G., & Akimoto, H. 1984. Laser induced fluorescence of CH3S and CD3S radicals. The Journal of Chemical Physics 81(12), 5405-5412.
- Wilson, E.B., Decius, J.C., Cross, P.C., 1955. Molecular Vibrations: the theory of infrared and Raman spectra. McGraw-Hill.

Visit us at: http://bosaljournals.com/chemint/ Submissions are accepted at: editorci@bosaljournals.com