Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies

Khaled Muftah Elsherif , Abdelmeneim El-Dali, Asma Amar Alkarewi, Abdunaser Mabrok Ewlad-Ahmed and Abdullah Treban

  • administrator .


Adsorption of crystal violet dye from aqueous solutions applying olive leaves powder (OLP) as a biosorbent has been examined under various experimental circumstances. The influence of contact time, pH, initial concentration of studied dye and adsorbent dose on the adsorption process has been investigated applying batch experiments. The concentration of remaining dye has been determined using molecular absorption spectrometry at wave length of 580 nm. The maximum removal of studied dye has been realized at pH 7.5 with a percent removal of 99.2% after 20 min of agitation time. Langmuir, Freundlich, and Temkin isotherm models exemplify the best fit for the experimental data; while the elevated adsorption capacity was 181.1 mg.g1. Adsorption kinetics of crystal violet was expected sufficiently with the empirical pseudo-second-order model. Corresponding to the adsorption capacity, olive leaves powder thought as a low cost, effective, and environmentally friendly biosorbent for the removal of crystal violet dye from aqueous solutions.